GLOBAL BIODIVERSITY ASSESSMENT (UNEP) (UNEP) VH Heywood, Executive Editor RT Watson, Chair | Forew | vord | vii | | |--------|--|------|--| | Prefac | ce | ix | | | Ackno | wledgements | xi | | | 1 | Introduction | | | | | V.H. Heywood, I. Baste (Co-ordinators) | | | | 2 | Characterizations of biodiversity | 21 | | | | F.A. Bisby (Focal Point Co-ordinator) | | | | 3 | Magnitude and distribution of biodiversity | | | | | 107 | | | | | D.L. Hawksworth (Focal Point Co-ordinator), M.T. Kalin-Arroyo (Co-ordinato | r) | | | 4 | Generation, maintenance and loss of biodiversity | 193 | | | | R. Barbault (Focal Point Co-ordinator), S.D. Sastrapradja (Co-ordinator) | | | | 5 | Biodiversity and ecosystem functioning: basic principles | | | | | 275 | | | | | H.A. Mooney (Focal Point Co-ordinator), J. Lubchenco, R. Dirzo, O.E. Sala (Co- | | | | | ordinator) | | | | 6 | Biodiversity and ecosystem functioning: ecosystem analysis | 327 | | | | H.A. Mooney (Focal Point Co-ordinator), J. Lubchenco, R. Dirzo, O.E. Sala (Co- | | | | | ordinator) | | | | 7 | Inventorying and monitoring of biodiversity | | | | | 453 | | | | | N.E. Stork (Focal Point Co-ordinator), M.J. Samways (Co-ordinator) | | | | 8 | The resource base for biodiversity assessments | 545 | | | | D.L. Hawksworth (Focal Point Co-ordinator) | | | | 9 | Data and information management and communication | 607 | | | | S. Olivieri (Focal Point Co-ordinator), J. Harrison, J.R. Busby (Co-ordinator) | | | | 10 | Biotechnology | | | | | 671 | | | | | B. Barlow (Focal Point Co-ordinator), G.T. Tzotzos (Co-ordinator) | | | | 11 | Human influences on biodiversity | 711 | | | | J.A. Mcneely (Focal Point Co-ordinator), M. Gadgil, Cleveque, E. Padoch, K. Re | | | | (Co- | ordinators) | | | | 12 | Economic values of biodiversity | 823 | | | | C. Perrings (Focal Point Co-ordinator) | | | | 13 | Measures for conservation of biodiversity and sustainable use of its compone | ents | | | | 915 | | | | | K. Miller (Focal Point Co-ordinator), M.H. Allegretti, N. Johnson, B, Johnson (C | 0- | | | ordina | , | | | | Annex | | | | | | 1063 | | | | Annex 2
Annex 3
Annex 4
Annex5 | | List of institutions and staff involved in the GBA project
Venues, dates and participants in GBA meetings and workshops
Contributors to the Global Biodiversity Assessment
List of peer reviewers of the Global Biodiversity Assessment | | | | | |---|----------|--|------|--|--|--| | Annex | 1088 | Glossary | 1104 | | | | | Annex | | List of acronyms | 1120 | | | | | Index | , | List of uci onymis | 1125 | | | | | Chapt | er 1: | Introduction | | | | | | 1.0 | Introd | ucing biodiversity | | | | | | 1.1 | Aims a | nd objectives | | | | | | | 1.1.1 | Objective of the Assessment | | | | | | | 1.1.2 | Linkages with the Convention of Biological Diversity and other initiative | ves | | | | | 1.2 | Definii | ng and characterizing biodiversity | | | | | | 1.3 | The co | verage of the Assessment | | | | | | | 1.3.1 | Biological aspects | | | | | | | | 1.3.1.1 The magnitude and distribution of organismal diversity | | | | | | | | 1.3.1.2 The dynamics of biodiversity: genetics, speciation and extinction | n | | | | | | | 1.3.1.3 The dynamics of biodiversity: ecosystem functioning | | | | | | | 1.3.2 | Human society and biodiversity | | | | | | | | 1.3.2.1 Cultural diversity | | | | | | | 4.0.0 | 1.3.2.2 The values of biodiversity | | | | | | | 1.3.3 | Strategies for biodiversity conservation and sustainable use | | | | | | | | 1.3.3.1 Basic principles | | | | | | | | 1.3.3.2 Conservation approaches | | | | | | | | 1.3.3.3 Improving the knowledge base | | | | | | | | 1.3.3.4 Human and institutional capacity | | | | | | | | 1.3.3.5 Global and national co-ordination | | | | | | Refere | | | | | | | | _ | | haracterization of Biodiversity | | | | | | | tive Sur | • | | | | | | 2.0 | | uction to the characterization of biodiversity | | | | | | | | What is biodiversity? | | | | | | | 2.0.2 | What is mean by share storiging his diversity? | | | | | | 2.1 | | What is mean by characterizing biodiversity? | | | | | | 2.1 | | ersity from a taxonomic and evolutionary perspective | n | | | | | | 2.1.0 | Introduction: patterns of living organisms- classification and evolution | 11 | | | | | | | 2.1.0.1 Folk classification and the origin of scientific taxonomy | | | | | | | 2.1.1 | The basics of taxonomic characterization: what taxonomists do | | | | | | | | 2.1.1.1 The role of specimens in taxonomy | | | | | | | | 2.1.1.2 Stability of scientific names | | | | | | keys | 2.1.2 | Characterizing flora, fau | ana and microbiota: preparing Floras, handbooks and | | | |------------------|-------|--|---|--|--| | Keys | | 2.1.2.1 The amount of re
2.1.2.2 Modern develop | esearch work involved
ments: databases and expert identification systems | | | | | 2.1.3 | Characterizing systematic classification | tic patterns: the species, their evolution and their | | | | | | 2.1.3.1 Analysing systematic data to reconstruct evolutionary history 2.1.3.2 From phylogenetic tree to formal classifications | | | | | | | 2.1.3.3 Why do classifica | ation schemes change? | | | | | 2.1.4 | 3 1 | | | | | | | 2.1.4.1 The morphologic | | | | | | | 2.1.4.2 The biological sp | | | | | | | 2.1.4.3 The phylogentic | | | | | | 2.1.5 | 2.1.4.4 The pluralistic ap | • • | | | | | 2.1.5 | | and taxonomic products ucts: an essential technological infrastructure for | | | | | | | ology, natural resources management, and regulation | | | | | | | biodiversity and evolutionary patterns | | | | | | 2.1.5.2 As a basis for pre | | | | | | | 2.1.5.4 Other uses of tax | | | | | | 2.1.6 | Taxonomic measures of | <u>-</u> | | | | | | 2.1.6.1 Evaluating taxonomic isolation of individual species | | | | | | | 2.1.6.2 Measuring taxon | omic diversity of biota or ecosystems | | | | 2.1.7 Conclusion | | | | | | | 2.2 | | netic diversity as a component of biodiversity | | | | | | 2.2.0 | | | | | | | 2.2.1 | | | | | | | | 2.2.1.1 Analysis of karot
2.2.1.1.1 Ka | · · | | | | | | | ryotypic variation analysis techniques
enetic diversity studies | | | | | | 2.2.1.1.2 de
2.2.1.1.3 As | | | | | | | | ods for assessing levels of genetic diversity | | | | | | | lozymes | | | | | | | estriction fragment length polymorphism (RFLP) | | | | | | | ulti-locus DNA fingerprinting of minisatellite loci | | | | | | | ngle-locus DNA fingerprinting of minisatellite loci | | | | | | | ene cloning and polymerase chain reaction (PCR) | | | | | | 2.2.1.2.6 Nu | ıcleotide sequences | | | | | | - | pplications of PCR | | | | | | | onclusion | | | | | 2.2.2 | | on under domestication | | | | | | _ | iodiversity within domesticated species | | | | | | _ | s of cultivars and breeds | | | | | | 2.2.2.3 Species complexes and gene flow | | | | | | | 2 2 2 4 Future developments | | | | | 2.2.3 Investigating genetic diversity | | | | | | | |---------------------------------------|--------|---|--|--|--|--| | | | 2.2.3.1 Type of biological material available | | | | | | | | 2.2.3.2 Research and development | | | | | | | 2.2.4 | ase studies of the use of genetic techniques in studies of within-species and | | | | | | | | between- species diversity | | | | | | | | 2.2.4.1 Partula | | | | | | | | 2.2.4.2 <i>Anolis</i> | | | | | | 2.3 | Riodis | Biodiversity from an ecological perspective | | | | | | ۷.5 | | Intro | | | | | | | | | | | | | | | 2.3.2 | Diversity within areas | | | | | | | | 2.3.2.1 Species richness and species diversity | | | | | | c | | 2.3.2.1.1 Comparing diversity across species groups: coherence | | | | | | of | | patterns | | | | | | | | 2.3.2.1.2 Comparing areas of different sizes | | | | | | | | 2.3.2.1.3 The relative abundance of species | | | | | | | | 2.3.2.2 Taxic diversity | | | | | | | | 2.3.2.3 Functional dicersity | | | | | | | | 2.3.2.3.1 Autecological diversity (species in isolation) | | | | | | | | 2.3.2.3.2 Synecological diversity (species in communities) | | | | | | | 2.3.3 | Diversity between areas | | | | | | | | 2.3.3.1 The general difficulties in classifying ecological communities | | | | | | | | 2.3.3.2 Classifications based on species composition | | | | | | | | 2.3.3.2.1 Phytosociology | | | | | | | | 2.3.3.2.2 Global classification of species distribution | | | | | | | | 2.3.3.3 Global classifications of ecosystems | | | | | | | | 2.3.3.4 Characterizing and classifying landscapes | | | | | | | | 2.3.3.5 Diversity in ecological systems | | | | | | | | 2.3.3.6 The importance of better ecological classifications | | | | | | | 2.3.4 | • | | | | | | | 2.3.4 | Conclusions | | | | | | Ch and | | Comity do and Distribution of Diodinousity | | | | | | _ | | lagnitude and Distribution of Biodiversity | | | | | | 3.0 | Intro | | | | | | | 3.1 | | arrent magnitude of biodiversity | | | | | | | 3.1.0 | Intro | | | | | | | 3.1.1 | Ecosystems and habitats | | | | | | | | 3.1.1.1 Ecosystem diversity | | | | | | | | 3.1.1.2 Habitat diversity | | | | | | | | 3.1.1.3 Assessment of global ecosystem diversity | | | | | | | | 3.1.1.4 Assessment of local biological diversity | | | | | | | | 3.1.1.5 Comparisons of different areas | | | | | | | 3.1.2 | Organism inventory | | | | | | | | 3.1.2.1 Inventorying life: the pivotal role of species | | | | | | | | 3.1.2.2 The record to date: described species | | | | | | | | 3.1.2.3 The true richness of life | |
 | | | | | 3.1.2.4 Sources of undisclosed species richness | | | | | | | | 3.1.2.4.1 Benthic species richness | | | | | | | | 5.1.2. 1.1 Dentine species Helliess | | | | | | | | 3.1.2.4.2 | Terrestrial anthropods | |----------------------|-------|------------------------|--| | | | 3.1.2.4.3 | Tropical tree crowns | | | | 3.1.2.4.4 | Fungi and other microorganisms | | | | 3.1.2.4.5 | Other groups | | | | 3.1.2.4.6 | Mutualists and parasites | | 3.1.2.5 Problems and | | 3.1.2.5 Problems an | | | | | 3.1.2.5.1 | Well-known groups are poor reference points | | | | 3.1.2.5.2 | Undisclosed sources of species richness | | | | 3.1.2.5.3 | The scale of uncertainty | | | | 3.1.2.5.4 | Conceptual and operational issues | | | | 3.1.2.6 The tools for | - | | | 313 | Genetic Diversity | the job | | | 5.1.5 | 3.1.3.1 Animal gener | tic diversity | | | | 3.1.3.2 Plant genetic | · · · · · · · · · · · · · · · · · · · | | | | 3.1.3.3 Other organi | · · · · · · · · · · · · · · · · · · · | | | 3.1.4 | Domesticated divers | | | | 3.1.4 | | centres of domesticated biodiversity | | | | | | | | | 3.1.4.2 Domesticate | | | | | | d animal biodiversity | | | | 3.1.4.4 Domesticate | | | | | | d microbial and invertebrate diversity | | 2.2 | mı ı | 3.1.4.6 Domesticate | | | 3.2 | | istribution of biodive | rsity | | | 3.2.0 | | | | | 3.2.1 | Geographical patter | s of blodiversity | | | | 3.2.1.1 Gradients | m | | | | 3.2.1.1.1 | Terrestrial environments | | | | 3.2.1.1.2 | Marine environments | | | | 3.2.1.2 Centres of di | • | | | | 3.2.1.2.1 | What is a centre of diversity? | | | | 3.2.1.2.2 | Do centres of diversity share general features? | | | | 3.2.1.2.3 | Are centers of diversity for different taxa congruent? | | | | 3.2.1.2.4 | Do centres of diversity correspond to areas of | | enden | nism? | | | | | | 3.2.1.3 Introduced s | | | | | 3.2.1.4 Domesticate | d species | | | | 3.2.1.5 Rarity | | | 5 | | 3.2.16 Diversity and | | | | 3.2.2 | | s: correlates and explanations | | | | | tal factors and biodiversity | | | | 3.2.2.1.1 | Climate and productivity | | | | 3.2.2.1.2 | Environmental chemistry | | | | 3.2.2.1.3 | Stress | | | | 3.2.2.1.4 | Heterogeneity | | | | 3.2.2.1.5 | Biological interactions | | | | 3.2.2.2 Speciation ar | nd extinction | | | | 3.2.2.2.1 | Species production | | | |--------|-------|------------------------------------|--|--|--| | | | 3.2.2.2.2 | Extinction | | | | | | • | eories of species diversity | | | | | | 3.2.2.3.1 | Processes that add and remove species | | | | | | 3.2.2.3.2 | Equilibrium versus non-equilibrium explanations | | | | | | 3.2.2.3.3 | Theories of local coexistence | | | | | | 3.2.2.3.4 | Terrestial landscape, marine environment and | | | | freshw | vater | 00045 | diversity | | | | | | | ries of local coexistence | | | | | | 3.2.2.4.1 | Community saturation | | | | | | 3.2.2.4.2 | Regional enrichment | | | | | | 3.2.2.4.3 | Community convergence in species diversity | | | | | | | ship between local and regional diversity | | | | | | 3.2.2.5.1 | Empirical evaluation of the relationship between local | | | | and | | | regional diversity | | | | | | 3.2.26 Taxon-specif | fic patterns of diversity: dispersal | | | | | | 3.2.2.6.1 | Passive dispersal | | | | | | 3.2.2.6.2 | Active dispersal | | | | | | 3.2.2.6.3 | Vectors | | | | | | 3.2.2.6.4 | Interactions of dispersal with breeding system | | | | | | 3.2.2.7 History, biog | raphy and diversity | | | | | | 3.2.2.7.1 | Non-convergence and the roles of history and | | | | | | | biogeography | | | | | | 3.2.2.7.2 | Diversity anomalies and geographic and historical circumstances | | | | | | 22272 | | | | | | | 3.2.2.7.3
3.2.2.7.4 | Congruence and independence of histories Differential extinction | | | | | | | | | | | | 222 | 3.2.2.7.5 | History and ecological diversity patterns | | | | 2.2 | | Concluding commer | | | | | 3.3 | | nism and biodiversity | | | | | | 3.3.1 | Endemism: concept | s and perspectives | | | | | | 3.3.1.1 Background | C 1 | | | | | | 3.3.1.2 Categories of endemics | | | | | | | 3.3.1.3 A phylogenetic perspective | | | | | | 0.0.0 | 3.3.1.4 Biases | | | | | | 3.3.2 | Evaluating endemism | | | | | | | 3.3.2.1 Units of mea | | | | | | 0.00 | 3.3.2.2 Percentages | versus counts | | | | | 3.3.3 | Patterns | | | | | | | 3.3.3.1 Centres of er | | | | | | | 3.3.3.2 Other patterns | | | | | | | 3.3.3.3 Congruence | | | | | | 3.3.4 | | | | | | | | 3.3.4.1 Regional spe | cies richness | | | | | | 3.3.4.2 Area | | | | | | | 3.3.4.3 Environmental factors | | | | - 3.3.4.4 Biotope - 3.3.4.5 Biological factors - 3.3.4.6 Taxonomic correlates - 3.3.4.7 modelling - 3.3.4.8 Endemism and reserve selection - 3.3.5 Special conservation considerations - 3.3.5.1 Endemic taxa as tools in conservation - 3.3.5.2 Pointers in the conservation of endemic taxa #### **Chapter 4: Generation, Maintenance and Loss of Biodiversity** - 4.0 Intro - 4.1 Large-scale history of biodiversity - 4.1.1 Intro - 4.1.2 The nature of the fossil record - 4.1.2.1 General considerations - 4.1.2.2 Estimating fossil biodiversity with higher taxa - 4.1.3 History of biodiversity - 4.1.3.1 Animal diversity in the oceans - 4.1.3.2 Pre-animal biodiversity in the oceans - 4.1.3.3 Plant diversity on land - 4.1.3.4 Terrestrial anthropods - 4.1.3.5 Terrestrial tetrapod vertebrates - 4.1.4 Extinction through time - 4.1.4.1 Background extinction - 4.1.4.2 Mass extinction - 4.1.4.3 Recoveries from mass extinctions - 4.1.5 Late Cenozoic biodiversity - 4.1.5.1 Global diversity over the last 15 million years - 4.1.5.2 End-Pleistocene extinctions - 4.1.5.3 Biotic invasions - 4.1.5.4 Holocene community dispuilibrium - 4.1.6 Conclusion - 4.2 Processes of genetic diversification - 4.2.1 Intro - 4.2.2 Measures of genetic diversity - 4.2.2.1 Measures for single loci - 4.2.2.2 Multiple populations - 4.2.2.3 Multiple loci - 4.2.2.4 Quantitative characteristics - 4.2.2.5 Genomic variation - 4.2.3 Process governing genetic evolution - 4.2.3.1 Mutation - 4.2.3.2 Genetic drift - 4.2.3.3 Natural and artificial selection - 4.2.2.3.1 Selection on phenotypic characters - 4.2.2.3.2 Selection on individual loci | | 4.2.2.3.3 Spatial and temporal variation in selection | | | |-------|---|--|--| | | 4.2.2.3.4 Selection on multiple characters | | | | | 4.2.2.3.5 Response to selection | | | | | 4.2.3.4 Dispersal and gene flow | | | | | 4.2.3.5 Recombination | | | | 4.2.4 | Maintenance of genetic diversity | | | | | 4.2.4.1 Mutation and selection | | | | | 4.2.4.2 Inbreeding depression and heterosis | | | | | 4.2.4.3 Selection opposed by gene flow | | | | | 4.2.4.4 Outbreeding depression | | | | | 4.2.4.5 Gene flow opposed by genetic drift | | | | 4.2.5 | Summary | | | | Diver | sification of species | | | | 4.3.1 | Population differentiation | | | | 4.3.2 | Speciation | | | | | 4.3.2.1 Allopatric speciation | | | | | 4.3.2.2 Parapatric speciation | | | | | 4.3.2.3 Sympatric speciation | | | | | 4.3.2.4 Other modes of speciation | | | | | Multiplication of species | | | | | Summary | | | | | gy of extinctions | | | | 4.4.1 | Current rate of extinctions | | | | | 4.4.1.1 Past extinctions | | | | | 4.4.1.2 Recent extinctions | | | | | 4.4.1.3 Current status and rate of extinctions | | | | 4.4.2 | Mechanisms of extinction | | | | | 4.4.2.1 Single populations | | | | | 4.4.2.1.1 Low population density: Allee effects | | | | | 4.4.2.1.2 Demographic stochasticity | | | | | 4.4.2.1.3 Environmental stochasticity | | | | | 4.4.2.1.4 Genetic factors in extinction | | | | | 4.4.2.1.5 Summary | | | | | 4.4.2.2 Metapopulations: assemblages of several local populations 4.4.2.2.1 Colonization-extinction stochasticity | | | | | | | | | 4.4.3 | 4.4.2.2.2 Regional stochasticity Causes of extinction | | | | 4.4.3 | 4.4.3.1 Loss of habitat | | | | | 4.4.3.2 Changes in habitat quality | | | | | 4.4.3.3 Habitat fragmentation | | | | | 4.4.3.4 Persecution and exploitation of populations | | | | | 4.4.3.5 Change in the biotic environment | | | | | 4.4.3.6 Summary | | | | 4.4.4 | Predicting extinction rates | | | | 7.7.4 | 4.4.4.1 Single populations | | | | | 4.4.4.2 Metapopulations | | | | | 1. 1. 1.2 Picapopulations | | | | | | | | 4.3 4.4 | | | 4.4.4.3 Population viability analysis | | | |--------|---|---|--|--| | | 4.4.5 | Summary | | | | 4.5 | nics of biodiversity at the community and ecosystem level | | | | | | 4.5.1 | | | | | | 4.5.2 | Competition and community organization | | | | | 4.5.3 | | | | | | 4.5.4 | How species are interdependent through manifold indirect interactions | | | | | 4.5.5 | | | | | maint | enance | of biodiversity | | | | | 4.5.6 | From ecosystems to genes: the role of coevolution in the generation of biodiversity | | | | | 4.5.7 | Towards an integrated approach | | | | | 4.5.8 | Summary | | | | Chant | . D | is discounity, and Factorston, Franchicaine, Basis Britaniae | | | | Cnapt | er 5: B | iodiversity and Ecosystem Functioning: Basic Principles | | | | 5.0 | Intro | | | | | | 5.0.1 | Background | | | | | 5.0.2 | Important concepts | | | | | 5.0.3 | Section organization | | | | 5.1 | Conte | t: biodiversity and ecosystem services | | | | 5.2 | Functi | onal properties of biodiversity: a hierarchical perspective | | | | | 5.2.1 | Genetic diversity and ecosystem functioning | | | | | 5.2.2 | Biodiversity effects on patterns and processes of communities and | | | | ecosys | stems | | | | | | | 5.2.2.1 Intro | | | | | | 5.2.2.2 Relationship between species and the functioning of ecological | | | | | ~~+ | communities and ecosystems: hypothesis concerning similarity | | | | amon | gst | species 5.2.2.3 Key Concepts and terms | | | | | |
5.2.2.4 Integrated framework | | | | | | 5.2.2.5 Effects of diversity <i>per se</i> on ecosystem processes | | | | | | 5.2.2.6 Mechanisms of community and ecosystem change due to species traits | | | | | | 5.2.2.7 Ecosystem-level feedbacks to biodiversity of invasions and extinctions | | | | | | 5.2.2.8 Conclusions | | | | | 5.2.3 | Effects of spatial structure on ecosystem functioning | | | | | | 5.2.3.1 Intro | | | | | | 5.2.3.2 Effects of spatial structure on species diversity and abundance | | | | | | 5.2.3.3 Effects of spatial structure on species interactions | | | | | | 5.2.3.4 Spatial structure and ecosystems | | | | | 5.2.4 | Biodiversity and landscape to regional scales | | | | | | 5.2.4.1 Intro | | | | | | 5.2.4.2 Diversity and ecosystem functioning at landscape to regional scales | | | | | | 5.2.4.3 Keystone ecosystems | | | | | | 5.2.4.4 Land-use diversity | | | | | | 5.2.4.5 Summary | | | | 5.3 | Drive | rs and dynamics of changes in biodiversity | |------|----------|---| | | | Overview of disturbance | | | | 5.3.1.1 Characteristics of disturbance | | | | 5.3.1.2 Relationship of disturbance to other ecological processes | | | | 5.3.1.3 Principles of disturbance | | | | 5.3.1.4 Disturbance and management | | | 5.3.2 | | | | | 5.3.2.1 Intro | | | | 5.3.2.2 Changes in land and water use | | | | 5.3.2.3 Changes in atmospheric composition | | | | 5.3.2.4 Climate change | | | | 5.3.2.5 Conclusion | | 5.4 | Concl | usions | | | 5.4.1 | Background | | | 5.4.2 | What are the influences of genetic diversity on ecosystem functioning? | | | 5.4.3 | What are the influences of species diversity on ecosystem functioning? | | | 5.4.4 | What are the influences of landscape diversity on ecosystem functioning? | | | 5.4.5 | What are the human influences on ecosystem functioning? | | | 5.4.6 | What are the management implications for goods and services? | | Chan | ter 6: F | Biodiversity and Ecosystem Functioning: Ecosystem Analyses | | 6.0 | Intro | rounversity and Beosystem ranettening. Beosystem rimaryses | | 0.0 | | Background | | | | Biome essays and ecosystems processes | | | | Cross-biome comparisons and syntheses | | 6.1 | | E Essays | | 0.1 | | Artic and alpine systems | | | | 6.1.1.1 Intro | | | | 6.1.1.2 Productive capacity, biomass, decomposition and nutrient cycling | | | | 6.1.1.3 Soil structure and nutrient pools | | | | 6.1.1.4 Water distribution, balance and quality | | | | 6.1.1.5 Feedbacks to atmospheric properties | | | | 6.1.1.6 Landscape and waterscape structure | | | | 6.1.1.7 Biotic linkages and species interactions | | | | 6.1.1.8 Microbial activities | | | | 6.1.1.9 Summary and relevance to human activities | | | 6.1.2 | Tropic forests | | | | 6.1.2.1 Intro | | | | 6.1.2.2 Human impacts on biodiversity | | | | 6.1.2.3 Productive capacity, biomass, decomposition, and nutrient cycling | | | | 6.1.2.4 Water distribution, balance, and quality | | | | 6.1.2.5 Atmospheric properties and feedback | | | | 6.1.2.6 Landscape and waterscape structure | | | | 6.1.2.7 Biotic linkages and species interactions | | | | 6.1.2.8 Microbial activities | | | | 6.1.2.9 Summary and relevance to human activities | #### 6.1.3 Temperate forest systems - 6.1.3.1 Intro - 6.1.3.2 Productive capacity, biomass, decomposition and nutrient cycling - 6.1.3.3 Soil structure and nutrient pools - 6.1.3.4 Water distribution, balance and quality - 6.1.3.5 Feedbacks to atmospheric properties - 6.1.3.6 Landscape and waterscape structure - 6.1.3.7 Biotic linkages and species interactions - 6.1.3.8 Microbial activities - 6.1.3.9 Summary and relevance to human activities #### 6.1.4 Arid and semi-arid lands - 6.1.4.1 Intro - 6.1.4.2 Productive capacity, biomass, decomposition and nutrient cycling - 6.1.4.3 Soil structure and nutrient pools - 6.1.4.4 Water distribution, balance and quality - 6.1.4.5 Feedbacks to atmospheric properties - 6.1.4.6 Landscape structure - 6.1.4.7 Biotic linkages and species interactions - 6.1.4.8 Microbial activities - 6.1.4.9 Summary and relevance to human activities #### 6.1.5 Tropical savannahs - 6.1.5.1 Intro - 6.1.5.2 Human impacts on biodiversity - 6.1.5.3 Productive capacity, biomass and decomposition - 6.1.5.4 Soil structure and nutrients - 6.1.5.5 Water distribution, balance and quality - 6.1.5.6 Atmospheric properties - 6.1.5.7 Landscape and waterscape structure - 6.1.5.8 Biotic linkages and species interactions - 6.1.5.9 Microbial activities - 6.1.5.10 Summary and relevance to human activities #### 6.1.6 Boreal forests - 6.1.6.1 Intro - 6.1.6.2 Human-induced impacts and threats to biodiversity - 6.1.6.3 Productive capacity, biomass and decomposition - 6.1.6.4 Soil structure and nutrients - 6.1.6.5 Water distribution, balance and quality - 6.1.6.6 Feedbacks to atmospheric properties - 6.1.6.7 Landscape structure - 6.1.6.8 Biotic linkages and species interactions - 6.1.6.9 Microbial activities - 6.1.6.10 Summary and relevance to human activities ### 6.1.7 Temperate grasslands - 6.1.7.1 Intro - 6.1.7.2 Human impact on biodiversity - 6.1.7.3 Productive capacity - 6.1.7.4 Decomposition and soil structure - 6.1.7.5 Water distribution and balance - 6.1.7.6 Atmospheric properties - 6.1.7.7 Landscape structure - 6.1.7.8 Biotic linkages and species interactions - 6.1.7.9 Microbial activities - 6.1.7.10 Summary and relevance to human activities - 6.1.8 Mediterranean-type ecosystems - 6.1.8.1 Intro - 6.1.8.2 Productive capacity, biomass and decomposition - 6.1.8.3 Soil structure and nutrients - 6.1.8.4 Water distribution, balance and quality - 6.1.8.5 Atmoshperic properties - 6.1.8.6 Landscape and waterscape structures - 6.1.8.7 Biotic linkages and species interactions - 6.1.8.8 Microbial activities - 6.1.8.9 Summary and relevance to human activities - 6.1.9 Coastal systems - 6.1.9.1 Intro - 6.1.9.2 Major human-induced impacts on and threats to biodiversity - 6.1.9.3 Productive capacity, biomass, decomposition and nutrient cycling - 6.1.9.4 Sediment structure - 6.1.9.5 Water movement and quality - 6.1.9.6 Feedbacks to atmospheric properties - 6.1.9.7 Landscape and waterscape structure - 6.1.9.8 Biotic linkages and species interactions - 6.1.9.9 Microbial activities - 6.1.9.10 Summary and relevance to human activities #### 6.1.10 Coral reefs - 6.1.10.1 Intro - 6.1.10.2 Threats to reefs - 6.1.10.3 Productivity capacity, biomass and decomposition - 6.1.10.4 Sediment structure and nutrients - 6.1.10.5 Water circulation and quality - 6.1.10.6 Atmospheric properties - 6.1.10.7 Landscape and seascape structure - 6.1.10.8 Biotic linkages and species interactions - 6.1.10.9 Microbial activities - 6.1.10.10 Summary and relevance to human activities - 6.1.10.11 Management implications #### 6.1.11 Mangrove systems - 6.1.11.1 Intro - 6.1.11.2 Human impacts on relevant biodiversity components - 6.1.11.3 Productive capacity, biomass and decomposition - 6.1.11.4 Soil structure and nutrients - 6.1.11.5 Water distribution, balance and quality - 6.1.11.6 Atmospheric properties - 6.1.11.7 Landscape and waterscape structure - 6.1.11.8 Biotic linkages and species interactions - 6.1.11.9 Microbial activities - 6.1.11.10 Summary and relevance to human activities - 6.1.12 Open oceans - 6.1.12.1 Intro - 6.1.12.2 Threats to the ocean - 6.1.12.3 Productivity capacity, biomass, decomposition and nutrient cycling - 6.1.12.4 Sediment structure and nutrient pools - 6.1.12.5 Water distribution, balance and quality - 6.1.12.6 Feedbacks to atmospheric properties - 6.1.12.7 Landscape and waterscape structure - 6.1.12.8 Biotic linkages and species interactions - 6.1.12.9 Microbial activities - 6.1.12.10 Summary and relevance to human activities - 6.1.13 Lakes and rivers - 6.1.13.1 Intro - 6.1.13.2 Productivity capacity, biomass, decomposition and nutrient cycling - 6.1.13.3 Water distribution, balance and quality - 6.1.13.4 Atmospheric properties - 6.1.13.5 Landscape and waterscape structure - 6.1.13.6 Biotic linkages and species interactions - 6.1.13.7 Microbial activities - 6.1.13.8 Summary and relevance to human activities - 6.2 Cross-biome comparisons - 6.2.1 Productivity capacity and biomass accumulation - 6.2.1.1 Intro - 6.2.1.2 Lessons from agriculture - 6.2.1.3 Habitat variation in space and time - 6.2.1.4 Production and resource augmentation - 6.2.1.5 Biomass and disturbance - 6.2.2 The soil system - 6.2.2.1 Intro - 6.2.2.2 Lessons from agriculture - 6.2.2.3 Soil organic - 6.2.2.4 Functional importance of spatial complexity - 6.2.2.5 Summary and relevance to human activities - 6.2.3 Effects of biodiversity on water distribution and quality - 6.2.3.1 Intro - 6.2.3.2 Distribution of water - 6.2.3.3 Groundwater fluxed - 6.2.3.4 Evapotraspiration - 6.2.3.5 Filtration and assimilative capacity - 6.2.3.6 Trophic cascades and other biotic influences on water quality - 6.2.3.7 Summary and implications | 6.2.4 | Atmospheric feedback | | | |--|--|--|--| | | 6.2.4.1 Intro | | | | | 6.2.4.2 Biogenic emissions and atmospheric properties | | | | | 6.2.4.3 Fluxes of atmospheric constituents into the biosphere | | | | | 6.2.4.4 Climate change and biosphere/ atmosphere interactions at the level | | | | | biodiversity and ecosystem functioning | | | | | 6.2.4.5 Conclusions and management implications | | | | 6.2.5 | The influence of biodiversity on landscape structure | | | | | 6.2.5.1 Intro | | | | | 6.2.5.2 Specific systems | | | | | 6.2.5.2.1 Arid systems | | | | | 6.2.5.2.2 Temperate and boreal forests and grasslands | | | | | 6.2.5.2.3 Tropical savannahs | | | | | 6.2.5.2.4 Wet tropics | | | | | 6.2.5.2.5 Aquatic systems | | | | | 6.2.5.3 Generalizations | | | | 6.2.6 | Biotic linkages and ecosystem functioning | | | | 0.2.0 | 6.2.6.1 Intro | | | | | 6.2.6.2 Human impacts | | | | | 6.2.6.3 Effects of removal of species on biotic
linkages | | | | | 6.2.6.3.1 Empirical evidence of the effect on ecosystem | | | | functioning | 0.2.0.3.1 Empirical evidence of the effect off ceosystem | | | | runctioning | 6.2.6.4 Effects of addition of species on biotic linkages | | | | | 6.2.6.4.1 Empirical evidence of the effect on ecosystem | | | | functioning | o.2.o Empirical evidence of the effect on ecosystem | | | | ranceroning | 6.2.6.5 Cross-biome comparison and ecosystem services | | | | | 6.2.6.5.1 Pollination linkages | | | | | 6.2.6.5.2 Seed dispersal linkages | | | | | 6.2.6.5.3 Grazing linkages | | | | | 6.2.6.6 Conclusion | | | | 6.2.7 | | | | | 0.2.7 | 6.2.7.1 Background | | | | | 6.2.7.2 Important aspects of microbial diversity | | | | | 6.2.7.2.1 Substrate-based groups | | | | | 6.2.7.2.2 Sized-based groups | | | | | 6.2.7.2.3 Species-specific interactions | | | | | 6.2.7.2.4 Qualitative and stabilizing effects of diversity | | | | | 6.2.7.3 Changes in biodiversity and microbial activity | | | | | 6.2.7.3.1 Biotic interactions | | | | | 6.2.7.3.2 Trace gas production | | | | | 6.2.7.3.3 Carbon and nutrient cycling | | | | | 6.2.7.4 Conclusion | | | | | | | | | 0.2.0 | Agroecosystems 6.2.8.1 Intro | | | | 6.2.8.2 Impact of agriculture intensification on relevant biodiversity | | | | | components | o.2.o.2 impact of agriculture intensification on relevant blourversity | | | | | | | | | | 6.2.8.3 Ec | osystem c | onsequences of impacts | |------|-----------------------|--------------|--| | | 6.2 | 2.8.3.1 | Productivity capacity, biomass and decomposition | | | 6.2 | 2.8.3.2 | Soil structure and nutrients | | | 6.2 | 2.8.3.3 | Water distribution, balance and quality | | | 6.2 | 2.8.3.4 | Atmospheric properties | | | 6.2 | 2.8.3.5 | Landscape and waterscape structure | | | 6.2 | 2.8.3.6 | Biotic linkages and species interactions | | | 6.2 | 2.8.3.7 | Microbial activities | | 6.3 | Conclusions | | | | | 6.3.1 Backgrou | nd | | | | 0 | | ecosystem approach | | | - | | d services | | | 6.3.4 Drivers of | • | | | | | _ | e functional sensitivities of ecosystems | | | | | tions and species losses | | | | | d fragmentation of populations and ecosystems | | | | d services | | | | 6.3.9 Implication | | 4011511 | | | olory implication | , iii | | | Chap | ter 7: Inventoryi | ng and Mo | onitoring | | 7.0 | Intro | 0 | 5 | | 7.1 | Why inventory a | nd monito | or biodiversity? | | 7.2 | 5 | | aches to inventorying and monitoring | | 7.3 | Integrates approaches | | | | 7.4 | Capacity building | | | | | | 3 | | | Chap | ter 8: The Resou | ce Base f | or Biodiversity Assessments | | 8.0 | Intro | | | | 8.1 | Historical consid | lerations | | | 8.2 | Protected area s | ystems | | | 8.3 | General biologic | al referenc | e collections | | | 8.3.1 Intro | | | | | 8.3.2 Distributi | on and dir | nensions of biological reference collections | | | 8.3.3 Preservat | | | | | 8.3.4 Accessibi | lity of biol | ogical reference collections | | | 8.3.5 Collection | - | | | | 8.3.6 Costs of b | iological r | eference collections | | 8.4 | Information reso | urces | | | | 8.4.1 Libraries | | | | | 8.4.2 Electronic | c media | | | | 8.4.3 Directorio | es of biodi | versity information | | | | | and registers for described species | | | 8.4.5 Identifica | | | | 8.5 | Living plant colle | | | | 0.0 | 8.5.1 Types of l | | t collections | | | | | arboretum collections | | | | | | | | | 8.5.2.1 What is botanic garden? | | | | | |-------|---|--|--|--|--|--| | | 8.5.2.2 The extent, distribution and resources of botanic | | | | | | | | | 8.5.2.3 Botanic garden networks and linkages | | | | | | | | 8.5.2.4 What plants are in botanic garden collections? | | | | | | | | 8.5.2.5 Conservation programmes | | | | | | | | 8.5.2.6 Further sources of information | | | | | | | 8.5.3 | National plant collections | | | | | | 8.6 | | gical gardens, insectaries and aquaria | | | | | | 8.7 | _ | e stations | | | | | | | Marine stations and the marine realm | | | | | | | | 8.7.2 | Marine stations as biodiversity observations | | | | | | | | Existing networks | | | | | | 8.8 | | c resource collections | | | | | | | 8.8.1 | What are genetic resource collections? | | | | | | | 8.8.2 | Management of genetic resource collections | | | | | | | 8.8.3 | Types of genetic resource collection | | | | | | | 8.8.4 | | | | | | | | | 8.8.4.1 Plant genetic resources | | | | | | | | 8.8.4.2 Livestock | | | | | | | | 8.8.4.3 Fungi and other microorganisms | | | | | | | 8.8.5 | Constraints | | | | | | | 8.8.6 | The development of genetic resource collections | | | | | | | | 8.8.6.1 Plants | | | | | | | | 8.8.6.2 Livestock and other animals | | | | | | | | 8.8.6.3 Fungi and other microorganisms | | | | | | 8.9 | Sequence databanks | | | | | | | 8.10 | | n resources | | | | | | | 8.10.1 | The magnitude of the resource | | | | | | | | 8.10.1.1 Biosystematists | | | | | | | | 8.10.1.2 'Amateurs' | | | | | | | | 8.10.1.3 Parataxonomists | | | | | | | | 8.10.1.4 Indigenous peoples | | | | | | | 8.10.2 | The deployment of the resource | | | | | | | | 8.10.2.1 Geographic deployment | | | | | | | | 8.10.2.2 Subject deployment | | | | | | | 8.10.3 | Productivity and working practices | | | | | | | | 8.10.3.1 Productivity | | | | | | | | 8.10.3.2 Improving working practices | | | | | | Chant | on (). D | ata and Information Management and Communication | | | | | | Chapt | ery: D | ata and Information Management and Communication | | | | | ## Cł - 9.0 Intro - 9.1 Biodiversity information: its nature and its users - 9.2 Data collection and management - 9.3 Tools and technologies - Making information more widely available Sources of biodiversity information 9.4 - 9.5 - 9.6 Legal aspects of information management - 9.7 Institutional capacity development ## **Chapter 10: Biotechnology** - 10.0 Intro - 10.1 Accessing and using molecular DNA data on biodiversity - 10.2 Applications of biotechnology for the utilization of biodiversity - 10.3 Impacts of biotechnology on biodiversity - 10.4 Conclusions #### **Chapter 11: Human Influences on Biodiversity** - 11.0 Intro: conceptual framework - 11.1 History of human impact on biodiversity - 11.1.1 Intro - 11.1.2 The hunter-gatherer phase - 11.1.3 The farming phase - 11.1.4 The urban phase - 11.1.5 The modern high-energy phase - 11.1.6 History of conservation traditions - 11.1.7 Historical trends in property rights - 11.2 The impact of human activity on biodiversity - 11.2.1 Intro - 11.2.2 The mechanisms of human impacts on biodiversity - 11.2.2.1 Exploitation of wild living resources - 11.2.2.2 Expansion of agriculture, forestry and aquaculture - 11.2.2.2.1 Intro - 11.2.2.2.2 Traditional cultivation - 11.2.2.2.3 Modern cultivation - 11.2.2.2.4 Fisheries - 11.2.2.2.5 Forestry - 11.2.2.3 Habitat loss and fragmentation - 11.2.2.4 Indirect negative effects of species introduced by humans - 11.2.2.4.1 Intro - 11.2.2.4.2 Introduced species and their distribution - 11.2.2.4.3 Effects of invasive species and ecosystem suspectibility - 11.2.2.4.4 Recover of soil, water, and ecosystems - 11.2.2.5 Pollution of soil, water, and atmosphere - 11.2.2.6 Global climate change - 11.2.3 Forces driving human impact on biodiversity - 11.2.3.1 The rules governing the use of biological resources - 11.2.3.1.1 Intro - 11.2.3.1.2 The impact of cultural values on biodiversity - 11.2.3.1.3 Property rights and the use of biological resources - 11.2.3.1.4 Impact of access to information intellectual - 11.2.3.2 Growth in human population and natural resource consumption | | | 11.2.3.3 | | Urbani | sation and biodiversity | |--------|----------|-----------|---------|---------|--| | | | 1 | 1.2.3. | 3.1 | Effect of urbanization on biodiversity | | | | 11.2.3.4 | | Consec | quences of increasing demand for resources | | | | 11.2.3.5 | | | mic systems and policies that fail to value the | | enviro | nment | | | | and its resources | | | | 11.2.3.6 | | Inequi | ty in the ownership, management and flow of benefits | | from | | | | • | the use and conservation of biological resources | | | 11.2.4 | Conclus | ions | | <u> </u> | | 11.3 | Inform | ation red | quirer | nents f | or the sustainable use of biodiversity | | | 11.3.1 | Intro | - | | | | | 11.3.2 | Monitor | ing bi | odivers | sity, its use, and changes in natural and managed | | ecosys | | | Ü | | | | | | 11.3.2.1 | | Long-t | erm monitoring | | | | 11.3.2.2 | | _ | oring the rehabilitation of degraded ecosystems | | | | 11.3.2.4 | | | s introductions | | | | 11.3.2.5 | | • | ory and data bases | | | 11.3.3 | Strength | | | science research and the connections between | | biolog | ical and | _ | _ | , | social processes | | O | | 11.3.3.1 | | Knowl | edge, innovations, and practices of indigenous and local | | | | | | commi | • | | | | 11.3.3.2 | | Legal a | | | | | 11.3.3.3 | | _ | nics and biodiversity | | | | | 1.3.3. | | Contribution of wild species to local economics and to | | | | - | 110101 | 0.1 | international trade | | | | 1 | 1.3.3. | 3.2 | How to value what we have? | | | | | 1.3.3. | | Managing trade and having biodiversity too | | | | 11.3.3.4 | | | d sustainability use of resources and ecosystems: the | | need | | 11101011 | | romar | for new management options | | псса | | 1 | 1.3.4. | 1 | Ecosystems management | | | | | 1.3.4. | | Living resources management | | | | | 1.3.4. | | The question of common property of natural resources | | | | | 1.3.4. | | Predicting the consequences of social and economic | | | | 1 | 1.5.7. | Т | changes on biological diversity | | | | 1 | 1.3.4. | 5 | Knowledge-based systems | | | | | 1.3.4. | | Developments transfer of technologies relevant to the | | | | 1 | 1.3.4. | U | sustainability use of biological diversity | | 11.4 | Futuro | nrocnoc | rtc | | sustainability use of biological diversity | | 11.4
| 11.4.1 | prospec | .13 | | | | | | Trends | | | | | | 11.4.2 | | | Donula | tion and recourses | | | | 11.4.2.1 | | - | tion and resources | | | | 11.4.2.2 | | _ | es in terrestrial and aquatic ecosystems | | | | 11.4.2.3 | | | e change | | | 11 40 | 11.4.2.4 | | _ | ations of global change | | | 11.4.3 | Human a | _ | | C. C. I I | | | 44.4. | 11.4.3.1 | | | nefits of technology | | | 11.4.4 | Constrai | ınts oı | ı huma | n adaptions | | | | 11.4.4.1 | Problems of uneven development | | | | |-------|--|--|---|--|--|--| | | | 11.4.4.2 | Prices, politics and alternative models of development | | | | | | | 11.4.4.3 | Building the capacity to adapt to change | | | | | | | 11.4.4.4 | Uncertainty | | | | | | | | | | | | | Chapt | er 12: 7 | The Economi | c Value of Biodiversity | | | | | 12.1 | Econor | mic value and | biodiversity | | | | | | 12.1.1 | Intro | | | | | | | | | e, policy failure and the problem of externality | | | | | | | | ounting and value | | | | | | | The value of diversity | | | | | | | | 2.1.5 Biodiversity and ecosystem functions | | | | | | | | Concluding re | | | | | | 12.2 | | d nonuse valu | | | | | | | 12.2.1 | A typology of | values | | | | | | | Value, ethics | | | | | | | 12.2.3 | Social and cul | tural differences in the perception of value | | | | | | 12.3.4 | Use value: sp | ecies versus habitats | | | | | | 12.3.5 Use value: habitats versus ecosystems | | | | | | | | | 2.3.6 Concluding remarks | | | | | | 12.3 | The va | luation of biod | diversity: theory and methodology | | | | | | 12.3.1 | Intro | | | | | | | 12.3.2 | _ | ence methods: contingent valuation and contingent ranking | | | | | | | 12.3.2.1 | Contingent valuation | | | | | | | 12.3.2.2 | Contingent ranking | | | | | | 12.3.3 | _ | ferences methods: travel cost and random utility models | | | | | | | 12.3.3.1 | | | | | | | | | The hedonic travel cost model | | | | | | | 12.3.3.3 | The random utility model | | | | | | | 2.3.4 Production function approaches | | | | | | | 12.3.5 | • | ference and opportunity cost | | | | | | | 12.3.5.1 | Change in productivity method | | | | | | | 12.3.5.2 | Change in earnings method | | | | | | | 12.3.5.3 | Defensive or preventative expenditures method | | | | | | | 12.3.5.4 | Replacement cost method | | | | | | | 12.3.5.5 | Substitution or proxy method | | | | | | | 12.3.5.6 | The shadow project method | | | | | | | 12.3.5.7 | Compensation cost method | | | | | | | 12.3.5.8 | Benefits transfer | | | | | | | Concluding re | | | | | | 12.4 | - | | and uncertainty | | | | | | 12.4.1 Distinguishing risk and uncertainty | | | | | | | | 12.4.2 | | certainty in environmental decision-making | | | | | | | 12.4.2.1 | Scenario analysis | | | | | | | 12.4.2.2 | Extended scenario analysis (sensitivity analysis) | | | | | | | 12.4.2.3 | Monte Carlo analysis | | | | | | 12.4.2.4 | Worst-case scenario | |------|---------------------|--| | | 12.4.3 The precau | tionary principle and safe minimum standards | | | 12.4.4 Concluding | | | 12.5 | The valuation of s | pecies and habitats: empirical results | | | 12.5.1 Intro | • | | | 12.5.2 The value of | of genetic resources and biotechnology | | | 12.5.3 The value s | | | | | of the value of parks and protected areas | | | 12.5.5 Concluding | remarks | | 12.6 | The valuation of e | cosystem functions: empirical results | | | | t value of biological resources | | | 12.6.2 Estimates of | of the use value of forests | | | 12.6.3 The total va | alue of forests | | | 12.6.4 Valuation a | nd policy | | | 12.6.5 Concluding | remarks | | l2.7 | Valuation in the co | onservation of biodiversity | | | 12.7.1 The goals o | f conservation | | | 12.7.2 Protected a | reas, conservation and development | | | 12.7.3 Incentives | and the appropriation of value: the local problem | | | 12.7.3.1 | Structural adjustment programmes and policies | | | 12.7.3.2 | Raising local benefits | | | 12.7.3.3 | Lowering local opportunity costs | | | 12.7.3.4 | Lowering forest protection costs | | | 12.7.3.5 | Water fees as conservation incentives | | | 12.7.3.6 | Internalizing ecotourism benefits | | | 12.7.3.7 | Reforestation incentives | | | 12.7.3.8 | Differential land-use tax | | | 12.7.3.9 | Environmental bonds | | | 12.7.3.10 | Forest compacts | | | 12.7.3.11 | Carbon offsets | | | 12.7.3.12 | Transferable development rights | | | 12.7.3.13 | Other instruments | | | | and the appropriation of value: The global problem | | | 12.7.4.1 | Global environmental markets | | | | property rights and the distribution of wealth | | | 12.7.6 Concluding | remarks | | | | | ## Chapter 13: Measures for conservation of Biodiversity and Sustainable Use of its Components - 13.0 Introduction - 13.1 A framework for managing biodiversity - 13.1.1 Introduction - 13.1.2 Context for biodiversity management - 13.1.3 Methods and tools for biodiversity management - 13.1.4 Approaches for managing biodiversity in a complex world - 13.1.4.1 Strategic planning | | 13.1.4.2 | Bior | egional and ecosystem management programmes | | | |--------|--|----------|---|--|--| | | 13.1.4.3 | Adap | otive management | | | | | 13.1.5 Conclusion | | | | | | 13.2 | Defining priorities | for con | servation and sustainable use | | | | | 13.2.1 Introductio | n | | | | | | 13.2.2 Genetically | based r | nethods for establishing priorities | | | | | 13.2.3 Species-bas | ed met | hods for establishing priorities | | | | | 13.2.4 Ecosystem- | based r | nethods for establishing priorities | | | | | 13.2.5 Integrative approaches for establishing priorities | | | | | | | 13.2.6 Experience in setting geographically-based priorities | | | | | | | 13.2.7 Principles f | or geog | raphic priority setting | | | | | 13.2.8 Conclusion | | | | | | 13.3 M | leasures for sustain | able us | e of biodiversity in natural resource management | | | | | 13.3.1 Introductio | n | | | | | | 13.3.2 Managing b | iodiver | sity in agriculture | | | | | 13.3.2.1 | Mana | aging biodiversity in traditional agriculture | | | | | 13.3.2.2 | Mana | aging biodiversity in modern agriculture | | | | | 13.3.2.3 | Mana | aging agriculture impacts on natural resources | | | | | 13.3.3 Managing b | iodiver | sity in forestry | | | | | 13.3.3.1 | Mana | aging biodiversity in traditional forestry | | | | | 13.3.3.2 | | aging biodiversity in commercial forestry | | | | | 13.3 | .3.2.1 | | | | | | | | forest genetic resources | | | | | 13.3 | .3.2.2 | Minimizing the impacts of forestry operations on | | | | | | | biodiversity | | | | | 13.3 | .3.2.3 | Biodiversity inventory and monitoring | | | | | 13.3.4 Managing biodiversity in fisheries | | | | | | | 13.3.4.1 | | aging biodiversity in traditional fisheries | | | | | 13.3.4.2 | | aging biodiversity in small-scale fisheries | | | | | 13.3.4.3 | | aging biodiversity in large-scale fisheries | | | | | 13.3.4.4 | | ly evolving practices in large-scale fisheries | | | | | 13.3.4.5 | | aging biodiversity in in aquaculture | | | | | 13.3.5 Managing v | | | | | | | 13.3.5.1 | | life management | | | | | 13.3.5.2 | | national commerce in wild species | | | | | 13.3.5.3 | | ntives for managing wild populations sustainably | | | | | 13.3.6 Biodiversity | | | | | | | | | of tourism on biodiversity | | | | | | | of urbanization and infrastructure on biodiversity | | | | | 13.3.8.1 | | erving biodiversity in urban areas | | | | | 13.3 | .8.1.1 | Habitat types | | | | | | .8.1.2 | | | | | | | .8.1.3 | = | | | | | 13.3.8.2 | | aging the impacts of infrastructure on biodiversity | | | | | 13.3.9 Conclusion | 1-1411 | | | | | 13.4 | | toring e | ecosystems, species, populations, and genetic diversity | | | | | 0 | 0 - | , | | | | | 13.4.1 | Introduction | | | |--------|---------|----------------|-----------|--| | | 13.4.2 | Protection ec | osyster | ns | | | | 13.4.2.1 | Protec | eted areas | | | | 13.4.2 | .1.1 | Protected areas classification, size, and distribution | | | | 13.4.2 | .1.2 | Managing biodiversity in protected areas | | | | 13.4.2 | .1.3 | Defining management objectives | | | | 13.4.2 | | Effectiveness of protected areas for maintaining | | | | | | biodiversity | | | | 13.4.2.2 | Manag | ging corridors and natural habitat fragments | | | | 13.4.2 | | Response of ecosystems to fragmentation | | | | 13.4.2 | .2.2 | Corridors in fragmented landscapes | | | | 13.4.2 | .2.3 | Protection and management of fragments | | | | 13.4.2.3 | | aining ecosystem functions and processes | | | 13.4.3 | Protection sp | | oulations and genetic resources | | | | 13.4.3.1 | _ | tened and endangered species classifications and species | | | | | | gement and recovery plans | | | | 13.4.3 | _ | Threatened and endangered species classifications | | | | | .1.2 | Management plans | | | | | .1.3 | Recovery plans | | | | 13.4.3 | | IUCN Species Survival Commission Action Plans | | | | 13.4.3.2 | | conservation of species, populations and genetic | | resour | ces | | | 1 /1 1 | | | | 13.4.3.3 | Ex situ | strategies | | | | 13.4.3 | .3.1 | Botanical gardens | | | | | .3.2 | | | | | 13.4.3 | .3.3 | Gene banks | | | | | .3.4 | | | | 13.4.4 | | | abilitation of species, populations and ecosystems | | | | 13.4.4.1 | | ration of species and populations | | | | 13.4.4.2 | | stem and landscape restoration | | | 13.4.5 | Conclusion | | • | | 13.5 | Social- | economic stra | ategies 1 | to sustainably use, conserve, and share the benefits of | | | biodiv | | J | • | | | | Introduction | | | | | 13.5.2 | Social interve | entions | at local and community levels | | | | 13.5.2.1 | | nous people | | | | 13.5.2.2 | Local | participation | | | | 13.5.2.3 | - | ds of
participatory inquiry | | | | 13.5.2.4 | | unity forest management | | | | 13.5.2.5 | | people and protected areas | | | 13.5.3 | Economic too | | | | | | 13.5.3.1 | | economic incentives | | | | 13.5.3.2 | | rving and using non-timber forest products | | | | 13.5.3.3 | Ecotor | | | | | 13.5.3.4 | | e reserves and private land leasing | | | 13.5.4 | Conclusion | , === | 1 | | | | | | | | 13.6 Legal measures for sustainable use and protection of biodiversity | | | | |--|---|--|--| | 13.6.1 Introduction | | | | | 13.6.2 Customary and traditional legal measures | | | | | 13.6.2.1 The nature of customary law | | | | | 13.6.2.2 Examples of customary law and biodiversity | | | | | 13.6.2.3 Customary law in transition | | | | | 13.6.3 National legislation | | | | | 13.6.3.1 Regulatory Measures | | | | | 13.6.3.1.1 Species-orientated legal measures | | | | | 13.6.3.1.2 Regulating use of protected areas | | | | | 13.6.3.1.3 Other area-based legal conservation actions | | | | | 13.6.3.1.4 Land-use planning legislation | | | | | 13.6.3.1.5 Nature parks and protected landscapes | | | | | 13.6.3.1.6 Legal protection of representative habitat typ | es | | | | 13.6.3.1.7 Regulating processes and activities detriment | | | | | biodiversity | | | | | 13.6.3.1.8 Regulating access to genetic resources | | | | | 13.6.3.2 Non-regulatory methods | | | | | 13.6.3.2.1 Financial incentives | | | | | 13.6.3.2.2 Covenants | | | | | 13.6.3.2.3 Easements | | | | | 13.6.3.2.4 Management agreements | | | | | 13.6.3.3 Combining regulatory and voluntary measures | | | | | 13.6.3.4 Environmental impact assessment and other legal in | onmental impact assessment and other legal institutions | | | | and procedures for conserving biodiversity | | | | | 13.6.4 International Law | | | | | 13.6.4.1 Regional and sectoral treaties | | | | | 13.6.4.2 The Convention on Biological Diversity | | | | | 13.6.4.3 Implementation and compliance | | | | | 13.6.4.4 Interaction between national and international | al | | | | legislation | | | | | 13.6.5 Conclusion | | | | | 13.7 Building capacity for biodiversity management | | | | | 13.7.1 Introduction | | | | | 13.7.2 Human capacity | | | | | 13.7.3 Institutional capacity | | | | | 13.7.4 Infrastructure capacity | | | | | 13.7.5 Funding capacity | | | | | 13.7.6 Conclusion | | | |